HO_x and NO Observations during INTEX-A

X. Ren J. Mao R. Long R. Lesher W. Brune
Department of Meteorology
Pennsylvania State University

HO_x and NO measurement techniques

OH and HO₂ measurements

ATHOS — Airborne Tropospheric Hydrogen Oxides Sensor

- Laser-induced fluorescence (LIF) detection of OH
- Chemically convert HO₂ to OH by HO₂+NO followed by the detection of OH with LIF

NO measurements

TEI 42C NO-NO_x analyzer

- Chemiluminescence
- NO single mode
- Online NO span and zero checks

Data Quality

Data coverage:

```
OH (1 min) - 97%
HO<sub>2</sub> (1 min) - 95%
NO (1 min) - 89%
```

Typical uncertainties:

$$HO_x$$
 ±32% (2σ) NO ±30% (2σ)

Detection limits:

```
OH 0.01 pptv
HO<sub>2</sub> 0.1 pptv
NO 50 ppt
```

HO_x and NO observations (July 22, Flight 11)

HO₂ and OH have good precision – sub-minute resolution will be used to examine variability.

Observed & PSS NO vertical profiles

The NO values between 2-6 km are around or below the NO detection limit (~50 pptv).

- Median observed-to-modeled OH ~ 0.6 at all altitudes.
- Median observed-to-modeled HO₂ ~ 0.8 up to 8 km.
- Behavior is similar to that in TRACE-P.
- Large observed-to-modeled OH in PBL correlates to isoprene (from Jim Crawford) as seen in forests.

- NO_x in INTEX-A is greater than in TRACE-P & PEM TB;
 CO and O₃ are similar in INTEX-A & TRACE-P.
- Observed-to-modeled HO₂/OH is close to 1 below 7 km, but exceeds 2 above ~9 km.
- HO₂/OH deviations appear to be NO_x related.

- Observed-to-modeled OH shows little NO_x-dependence.
- Observed-to-modeled HO₂ grows for NO_x > few 100 pptv.
- INTEX-A and TRACE-P dependences on NO_x are similar.
- Observed-to-modeled HO₂ < 1 for NO_x < few 100 pptv & > 1 for NO_x > few 100 pptv is usually observed by us and a few others.

HO_2 versus $(PHO_x)^{1/2}$

- $P(HO_x) = L(HO_x) \propto [HO_2]^2$, so $[HO_2] \propto sqrt \{P(HOx)\}$.
- Much HO₂ variance can be explained by P(HO_x).

HO_x observed & modeled comparisons

- Solid line: 1:1; dashed lines: obs. uncertainty ±32%.
- HO_x comparison similar to that in TRACE-P.

Modeled OH production and loss

Main P(OH) is O^1D+H_2O (below 5 km) and HO_2+NO (above 5 km). Main L(OH) is OH+CO/VOC.

Modeled HO₂ production and loss

Main $P(HO_2)$ is OH+CO. Main $L(HO_2)$ is HO_2-RO_2 self-reactions (below 5 km) & HO_2+NO (above 5 km).

O₃ budget

- Main $P(O_3)$: HO_2 +NO.
- Main $L(O_3)$: O^1D+H_2O (< 5 km) & O_3+HO_2/OH (> 5 km).
- Net O₃ loss at altitudes between 1 km and 5 km.

Science questions we hope to answer

- General comparisons between observed and modeled HO_x
 - Were previous observed-to-modeled anomalies also observed in INTEX-A? (e.g., NO_x-dependence of observed-to-modeled HO₂)
 - Can the HO_x heterogeneous effects (or lack thereof) be understood?
- High speed photochemistry one-to-a-few seconds
 - What are the effects of scale on calculating P(O₃) from HO₂ & NO?
 - Is HO_x behavior understood in urban, forest-fire, and long-range regionally transported plumes?
- HO_x behavior in the planetary boundary layer
 - What is the behavior of HO_x and P(O₃) and vertical distribution in the boundary layer?
 - Is isoprene chemistry in forested regions adequately understood?
- Collaborations with many others on these & other questions.